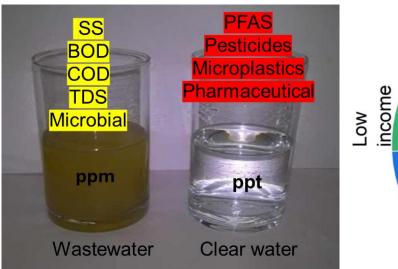
Sustainable Management of Emerging Contaminants in Wastewater: Monitoring, Governance, and Advanced Treatment Technologies in the Global South

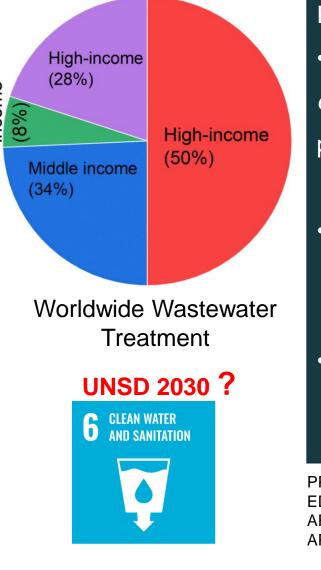
Dr. Deepchandra Joshi Postdoc @ IIT Madras, India PhD IIT Delhi, India

Global South Academic Conclave on WASH and Climate 2025

21st - 23rd February 2025, Ahmedabad


CEPT

Gates Foundation


on viega foundation

Emerging Contaminants (ECs)

People's Perception of Safe water are based on *subjective values*:

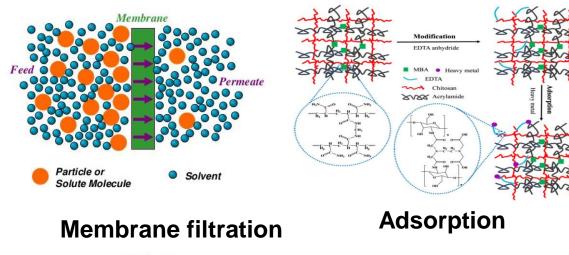
- Color,
- Odour,
- Taste and
- Suspended Impurities

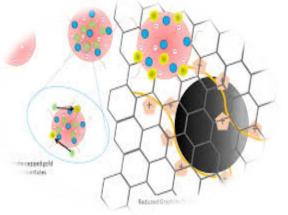
ECs: emerging and non-regulated

- Persistent, Toxic, low concentration
 e.g. PPCPs, EDCs, Pesticides, micro plastics, ARB, ARG
- worldwide output: 1 million to 500 million tons each year¹
- India: Pharmaceutical ~10 µg/L and PFAS ~100 ng/L in surface water

¹Khan, S et. al. (2022) Environmental Research,

PPCPs: Pharmaceutical and Personal care compounds EDCs: Endocrine Disrupting Compounds ARBs: Antibiotic Resistance Bacteria ARGs: Antibiotic Resistance Genes


viega foundation


Major EC Concentrations in Indian Waters

- Pharmaceutical residues: Reported up to 10 μg/L in major rivers (Yamuna, Ganges, Godavari)¹
- **PFAS contamination: Exceeding 100 ng/L** in surface and drinking water sources²
- Pesticide contamination: Organophosphate levels up to 50 µg/L in agricultural runoff³
- Microplastic pollution: Found in over 80% of sampled rivers⁴

¹Ranjan, N., et. al.,(2022). Ecotoxicology and Environmental Safety
²Koulini., et. al.,(2024). Journal of Water Process Engineering
³Behera, B. C et., al.,(2024). IJCS
⁴Neelavannan, K., & Sen, I. S. (2023).ACS omega.

ADVANCED WASTEWATER TREATMENT SYSTEMS

Nanoparticles

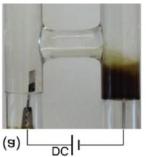
Advanced Oxidation Process (AOPs)

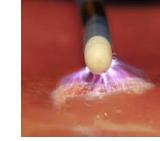
Adsorption

- + Cost-effectiveness
- Operational Challenges

Membrane technology

- + High treatment efficiency
- Chemical Compatibility

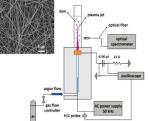

Nanotechnology


- + Selectivity
- Nanoparticles leaching

AOPs


- + Degradation method
- Chemical Requirements

PLASMA AS AN EFFECTIVE ADVANCED TREATMENT SYSTEM


Nanotechnolog

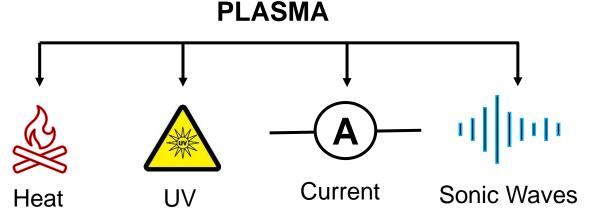
Biomedical

Agriculture

H₂ production

Reactive species formation and their interaction with contaminants¹

Sterilization


Analytics

Wastewater

Different applications of plasma technology

1. Gururani, P et al (2021). Cold plasma technology: advanced and sustainable approach for wastewater treatment. *Environmental Science and Pollution Research*,

Can degrade recalcitrant chemicals (e.g. PFOA)

- No additional chemicals needed
- No secondary waste generation

REGULATIONS AND GUIDELINES

USA

US-EPA: CCL list from 2014 Presently the CCL5 has 66 contaminants

European Union

European Chemicals Agency (ECHA) releases its ECs watchlist

Presently monitors 53 compounds

Japan

Annual Water Quality Examination Plan Drinking Water Quality Standards (DWQS)

- Australia and Canada
- Developing Countries with some regulations
 Brazil, China and India

Limitations of the current international regulations

• Gaps in Policy intervention:

USA major producer of ECs - not ratified to any significant conventions related to ECs Absence of enforceable regulatory authority

- Inadequate regulatory infrastructure for emerging contaminants
- Environmental behaviour and ecotoxicology:
 Manufacturer confidentiality practices
- Lack of link between science and policy Insufficient scientific evidence against ECs

- USEPA: epa.gov/ccl/contaminant-candidate-list-5-ccl-5
- EU: europa.eu/commission

Action Plan and Recommendations

Focus on three major dimensions of sustainability, i.e., economic, environmental and social

Targets

- 50% reduction in untreated wastewater by 2030
- 25% decrease in EC contamination by 2035

Strategies

- Deployment of cost-effective hybrid technologies.
- Capacity building for local governments and industries
- Incentives for private sector involvement

Source	Estimated Contribution
Pharmaceutical industries	10–20%
Hospitals & Healthcare	15–25%
Domestic Sewage	40–50%
Agricultural Runoff	10–20%
Landfills & Leachate	5–10%

Roadmap for EC Management in India: 2030 & 2035 Goals

- 1. Expand centralized treatment capacity CPCB (2021), NITI Aayog (2022)
- Implement decentralized wastewater treatment
- Increase wastewater reuse:

Expected Outcome: Untreated WW discharge reduced from 26.5 BLD to ~13 BLD (~50% reduction)

2. National EC Monitoring Program with Real-Time Data Sharing Current Status CPCB (2022), MoEFCC (2023):

- No centralized real-time EC monitoring in India
- Only 5% of cities have infrastructure for EC testing

Proposed Actions:

- Set up national EC monitoring stations at 50+ major rivers and 100+ WWTPs.
- Adopt sensor-based and AI-powered real-time monitoring technologies.
- Mandate data reporting from industries and STPs via an online National Water Quality Dashboard.

Proposed Scalable Framework

Strengthening Monitoring & Governance

- Nationwide EC surveillance programs with standardized methods
- Stricter discharge regulations for high-risk industries (pharma, textiles, tanneries)

Optimizing Treatment Strategies

- Hybrid treatment models: Combining biological, chemical, and physical processes
- Modular & decentralized EC removal units for high-impact industrial zones

Increasing Investment & Public-Private Partnerships (PPPs)

- Incentivizing private sector investment in EC treatment infrastructure
- PPP-driven pilot projects to test cost-effective, region-specific solutions

Conclusion & Call to Action

- The EC challenge in India & Global South requires immediate action
- Better monitoring, stricter policies, and scalable treatment technologies are key solutions
- Collaboration across academia, industry, and government is essential

Call for investment in research & pilot projects to develop cost-effective EC removal strategies

Thank You

Global South Academic Conclave on WASH and Climate 2025

CEPT UNIVERSITY Gates Foundation

on **viega** foundation